Relaxing Convergence Conditions for Newton's Method

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Gauss-Newtons Method based Back-propagation Algorithm for Fast Convergence

The present work deals with an improved back-propagation algorithm based on Gauss-Newton numerical optimization method for fast convergence. The steepest descent method is used for the back-propagation. The algorithm is tested using various datasets and compared with the steepest descent back-propagation algorithm. In the system, optimization is carried out using multilayer neural network. The ...

متن کامل

Convergence Conditions for the Secant Method

We provide new sufficient convergence conditions for the convergence of the Secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, Lipschitz–type and center–Lipschitz–type instead of just Lipschitz–type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise ...

متن کامل

Nonmonotone Convergence and Relaxing Functions

In the minimization of real valued functions, Newton’s algorithm is often combined with a line search method. Grippo et al [SIAM J. Numer. Anal., Vol. 23, No. 4] first suggested a nonmonotone stepsize selection rule based on the maximum of a fixed set of previous function values. In this paper we introduce the notion of relaxing functions and suggest several other nonmonotone procedures using a...

متن کامل

Convergence of MUSCL Relaxing Schemes

We consider the convergence and stability property of MUSCL relaxing schemes applied to conservation laws with stii source terms. The maximum principle for the numerical schemes will be established. It will be also shown that the MUSCL relaxing schemes are uniformly l 1-and T V-stable in the sense that they are bounded by a constant independent of the relaxation parameter , the Lipschitz consta...

متن کامل

Weaker conditions for the convergence of Newton's method

The Newton–Kantorovich hypothesis (15) has been used for a long time as a sufficient condition for convergence of Newton’s method to a locally unique solution of a nonlinear equation in a Banach space setting. Recently in [3], [4] we showed that this hypothesis can always be replaced by a condition weaker in general (see (18), (19) or (20)) whose verification requires the same computational cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2000

ISSN: 0022-247X

DOI: 10.1006/jmaa.2000.6900